Fall 2016

Solutions - Homework 2

(Due date: September 29th @ 5:30 pm)

Presentation and clarity are very important! Show your procedure!

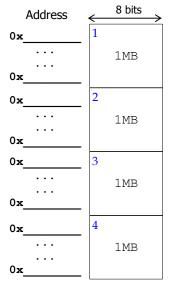
PROBLEM 1 (28 PTS)

~

- What is the minimum number of bits required to represent: (2 pts) a)
 - 341,000 symbols? $[\log_2 341,000] = 19$

- Symbols that represent numbers between 25,000 and 33,192? \checkmark $\log_2(33192 - 25000 + 1) = 14$
- b) A microprocessor has a memory space of 4 MB. Each memory address occupies one byte.

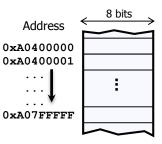
(8 pts) What is the address bus size (number of bits of the address) of this microprocessor?


Since 4 MB= 2^{22} bytes, the address bus size is 22 bits.

What is the range (lowest to highest, in hexadecimal) of the memory space for this microprocessor?

With 22 bits, the address range is 0x000000 to 0x3FFFFF.

- The figure to the right shows four memory chips that are placed in the given positions: Complete the address ranges (lowest to highest, in hexadecimal) for each of the
 - memory chips.

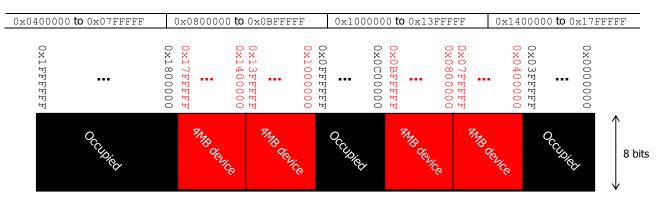

•						Address	<u> </u>	8 bits
0 (0 (0000 0000	0000 0000	0000 0000		0x000000 0x000001	1	1MB
0() 1111	1111	1111	1111	1111:	0x0FFFFF		
01 01		0000	0000	0000		0x100000 0x100001	2	1MB
0	 1111	1111	1111	1111	1111:	0x1FFFFF		
1(1(0000	0000	0000		0x200000 0x200001	3	1MB
1(···) 1111	1111	1111	1111	1111:	0x2FFFFF		
1: 1:		0000 0000	0000	0000		0x300000 0x300001	4	1MB
11	 1111	1111	1111	1111	1111:	 0x3fffff		

- c) A microprocessor has a 32-bit address line. The size of the memory contents of each address is 8 bits. The memory space is defined as the collection of memory positions the processor can address. (6 pts)
 - What is the address range (lowest to highest, in hexadecimal) of the memory space for this microprocessor? What is the size (in bytes, KB, or MB) of the memory space? $1KB = 2^{10}$ bytes, $1MB = 2^{20}$ bytes, $1GB = 2^{30}$ bytes

Address Range: 0x0000000 to 0xFFFFFFFF. With 32 bits, we can address 2^{32} bytes, thus we have $2^22^{30} = 4$ GB of address space.

- A memory device is connected to the microprocessor. Based on the size of the memory, the microprocessor has assigned the addresses 0xA0400000 to 0xA07FFFFF to this memory device.
 - What is the size (in bytes, KB, or MB) of this memory device?
 - What is the minimum number of bits required to represent the addresses only for this memory device?

given range (where the memory device is located). 1010 0000 01 00000 0000 0000 <th< th=""><th>8 bits</th></th<>	8 bits
device is located). 1010 0000 0100 0000 0000 0000 0001: 0xA0400001	
Thus, the size of the memory \dots device is $2^{22} = 4MB$.	:
1010 0000 01 <mark>11 1111 1111 1111 1111 111</mark>	


d) The figure below depicts the entire memory space of a microprocessor. Each memory address occupies one byte. (12 pts)
 What is the size (in bytes, KB, or MB) of the memory space? What is the address bus size of the microprocessor?

Address space: 0×0000000 to $0 \times 1FFFFFF$. To represent all these addresses, we require 25 bits. So, the address bus size of the microprocessor is 25 bits. The size of the memory space is then $2^{25}=32$ MB.

- If we have a memory chip of 4MB, how many bits do we require to address 4MB of memory?

 $4MB = 2^{22}$ bytes. Thus, we require 22 bits to address only the memory device.

- We want to connect the 4MB memory chip to the microprocessor. For optimal implementation, we must place those 4MB in an address range where every single address share some MSBs (e.g.: 0x1c00000 to 0x1FFFFFF). Provide a list of all the possible address ranges that the 4MB memory chip can occupy. You can only use any of the non-occupied portions of the memory space as shown below.

PROBLEM 2 (32 PTS)

- In these problems, you MUST show your conversion procedure. **No procedure = zero points**.
 - a) Convert the following decimal numbers to their 2's complement representations: binary and hexadecimal. (12 pts) ✓ -511.625, 101.3125, -64.6875, -31.65625.
 - +511.625 = 011111111.101 → -511.625 = 100000000.011 = 0xE00.6
 - 101.3125 = 01100101.0101 = 0x65.5
 - □ +64.6875 = 01000000.1011 → -64.6875 = 1110111111.0101 = 0xFBF.5
 - □ 31.65625 = 011111.10101 → -31.6525 = 100000.01011 = 0xE0.51
 - b) Complete the following table. The decimal numbers are unsigned: (8 pts.)

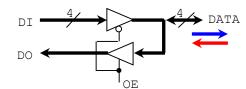
Decimal	BCD	Binary	Reflective Gray Code
278	001001111000	100010110	110011101
171	000101110001	10101011	11111110
731	011100110001	1011011011	11101101010
1024	000100000100100	1000000000	1100000000
217	001000010111	11011001	10110101
186	000110000110	10111010	11100111
265	001001100101	100001001	110001101
957	100101010111	1110111101	1001100011

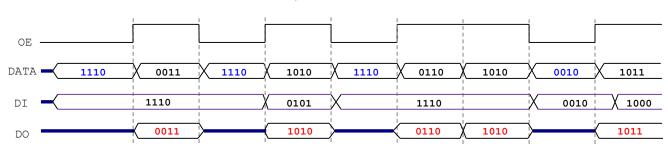
c) <u>Complete the following table. Use the fewest number of bits in each case: (12 pts.)</u>

REPRESENTATION					
Decimal	Sign-and-magnitude	1's complement	2's complement		
-257	110000001	1011111110	101111111		
-119	<mark>1</mark> 1110111	10001000	10001001		
-64	11000000	10111111	1000000		
-256	110000000	101111111	10000000		
-39	1100111	1011000	1011001		
145	010010001	010010001	010010001		
-128	11000000	101111111	1000000		
-125	<mark>1</mark> 1111101	10000010	1000011		

PROBLEM 3 (34 PTS)

a) Perform the following additions and subtractions of the following unsigned integers. Use the fewest number of bits n to represent both operators. Indicate every carry (or borrow) from c_0 to c_n (or b_0 to b_n). For the addition, determine whether there is an overflow. For the subtraction, determine whether we need to keep borrowing from a higher bit. (10 pts)


Example (n=8): 54 + 210 $54 = 0 \times 36 = 0 \times 12 = 1 \times 12 \times 12 \times 12 \times 12 \times 12 \times 12 $	$\checkmark 77 - 194$ Borrow out! $\blacksquare 2 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0$
 ✓ 189 + 203 ✓ 69 + 211 ✓ 17 + 499 	 ✓ 87 - 256 ✓ 241 - 37 ✓ 131 - 142
$\begin{array}{c} \mathbf{T} & \mathbf{T} \\ \mathbf{S}^{0} & \mathbf{S}^{0} \\ 189 &= 0 \text{ xBD} = 1 & 0 & 1 & 1 & 1 & 1 & 0 & 1 & + \\ 203 &= 0 \text{ xCB} = 1 & 1 & 0 & 0 & 1 & 0 & 1 & 1 \\ \hline \mathbf{Overflow!} \longrightarrow 1 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ \end{array}$	Borrow out! \longrightarrow $\begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 157 \\ = \\ 1 \\ 0 \\ 1 \\ 1$
$\begin{array}{c} \begin{array}{c} \begin{array}{c} & & \\ & \\ & \\ & \\ \end{array} \end{array} \xrightarrow{\begin{subarray}{c} & \\ & \\ & \\ \end{array} \end{array} \xrightarrow{\begin{subarray}{c} & \\ & \\ \end{array} \end{array} \xrightarrow{\begin{subarray}{c} & \\ & \\ & \\ \end{array} \end{array} \xrightarrow{\begin{subarray}{c} & \\ & \\ & \\ \end{array} \end{array} \xrightarrow{\begin{subarray}{c} & \\ & \\ & \\ \end{array} \xrightarrow{\begin{subarray}{c} & \\ & \\ \end{array} \end{array} \xrightarrow{\begin{subarray}{c} & \\ & \\ & \\ \end{array} \xrightarrow{\begin{subarray}{c} & \\ & \\ \end{array} \xrightarrow{\begin{subarray}{c} & \\ & \\ & \\ \end{array} \end{array} \xrightarrow{\begin{subarray}{c} & \\ & \\ & \\ \end{array} \xrightarrow{\begin{subarray}{c} & \\ & \\ \end{array} \xrightarrow{\begin{subarray}{c} & \\ & \\ & \\ \end{array} \xrightarrow{\begin{subarray}{c} & \\ & \\ \end{array} \xrightarrow{\begin{subarray}{c} & \\ & \\ & \\ \end{array} \xrightarrow{\begin{subarray}{c} & \\ & \\ \end{array} \xrightarrow{\begin{subarray}{c} & \\ & \\ \end{array} \xrightarrow{\begin{subarray}{c} & \\ \end{array} \xrightarrow{\begin{subarray}{c} & \\ & \\ \end{array} \xrightarrow{\begin{subarray}{c} & \\ \end{array} \xrightarrow{\ben{subarray}{c} & \\ \end{array} \xrightarrow{\ben{subarray}{c} & \\ \end{array} \begin{subara$	No Borrow Out $\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}{} \\ \end{array}{} \\ \end{array}{} \\ \begin{array}{c} \end{array}{} \\ \end{array}{} \\ \end{array}{} \\ \begin{array}{c} \end{array}{} \\ \end{array}{} \\ \begin{array}{c} \end{array}{} \\ \end{array}{} \\ \end{array}{} \\ \begin{array}{c} \end{array}{} \\ \end{array}{} \\ \end{array}{} \\ \begin{array}{c} \end{array}{} \\ \end{array}{} \\ \begin{array}{c} \end{array}{} \\ \end{array}{} \\ \end{array}{} \\ \begin{array}{c} \end{array}{} \\ \end{array}{} \\ \end{array}{} \\ \begin{array}{c} \end{array}{} \end{array}{} \\ \end{array}{} \\ \begin{array}{c} \end{array}{} \\ \end{array}{} \\ \end{array}{} \\ \begin{array}{c} \end{array}{} \\ \end{array}{} \\ \end{array}{} \\ \begin{array}{c} \end{array}{} \end{array}{} \\ \end{array}{} \\ \begin{array}{c} \end{array}{} \end{array}{} \\ \end{array}{} \\ \end{array}{} \\ \end{array}{} \\ \begin{array}{c} \end{array}{} \end{array}{} \\ \end{array}{} \\ \end{array}{} \end{array}{} \end{array}{} \end{array}{} \\ \end{array}{} \end{array}{} \end{array}{} \end{array}{} \end{array}{} \end{array}{} \end{array}{} \end{array}{} \end{array}{} \end{array}{}$
$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $	Borrow out! \longrightarrow a^{o} a^{o


b) We need to perform the following operations, where numbers are represented in 2's complement: (24 pts) -87 + 256 -35 + 65 490 + 22 -255 - 230 ✓ -129 + 128 986 + 123 • For each case: ✓ Determine the minimum number of bits required to represent both summands. You might need to sign-extend one of the summands, since for proper summation, both summands must have the same number of bits. ✓ Perform the binary addition in 2's complement arithmetic. The result must have the same number of bits as the summands. \checkmark Determine whether there is overflow by: Using c_n, c_{n-1} (carries). i. Performing the operation in the decimal system and checking whether the result is within the allowed range for ii. n bits, where n is the minimum number of bits for the summands. ✓ If we want to avoid overflow, what is the minimum number of bits required to represent both the summands and the result? n = 10 bits n = 8 bits c₁₀⊕c₉=0 c₈⊕c₇=0 $\begin{array}{c} {\bf c_{20}=1}\\ {\bf c_{9}=1}\\ {\bf c_{9}=2}\\ {\bf c_{8}=0}\\ {\bf c_{8}=0}\\ {\bf c_{5}=0}\\ {\bf c_{5}=0}\\ {\bf c_{4}=0}\\ {\bf c_{4}=0}\\ {\bf c_{2}=0}\\ {\bf c_{2}=0}\\ {\bf c_{1}=0}\\ {\bf c_{0}=0}\\ {\bf c_{0}=0}\\ \end{array}$ $c_8=1$ $c_7=1$ $c_6=0$ $c_6=0$ $c_5=0$ $c_5=0$ $c_5=0$ $c_3=0$ $c_2=0$ $c_2=0$ $c_2=0$ $c_2=0$ $c_2=0$ $c_2=0$ No Overflow No Overflow -87 = 1 1 1 0 1 0 1 0 0 1 + -35 = 1 1 0 1 1 1 0 1 + 256 = 0 1 0 0 0 0 0 0 0 0 $65 = 0 \ 1 \ 0 \ 0 \ 0 \ 0 \ 1$ $169 = 0 \ 0 \ 1 \ 0 \ 1 \ 0 \ 1 \ 0 \ 1$ $30 = 0 \ 0 \ 0 \ 1 \ 1 \ 1 \ 0$ $-87+256 = 169 \in [-2^9, 2^9-1] \rightarrow \text{no overflow}$ $-35+65 = 30 \in [-2^7, 2^7-1] \rightarrow \text{no overflow}$ n = 10 bits n = 9 bits c₁₀⊕c₉=1 c₀⊕c₈=1 $c_{3}=1$ $c_{3}=0$ $c_{5}=0$ $c_{5}=0$ $c_{5}=0$ $c_{5}=0$ $c_{3}=0$ $c_{3}=0$ $c_{2}=0$ $c_{2}=0$ $c_{1}=0$ $c_{1}=0$ $c_{10}=0$ $c_{9}=1$ $c_{9}=1$ $c_{6}=1$ $c_{7}=1$ $c_{6}=1$ $c_{7}=1$ $c_{7}=1$ $c_{1}=0$ $c_{1}=0$ $c_{1}=0$ Overflow! Overflow! 490 = 0 1 1 1 1 0 1 0 1 0 + $-255 = 1 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 1 \ +$ $-230 = 1 \ 0 \ 0 \ 1 \ 1 \ 0 \ 1 \ 0$ 22 = 0 0 0 0 0 1 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 $490+22 = 512 \notin [-2^9, 2^9-1] \rightarrow \text{overflow}!$ $-255-230 = -485 \notin [-2^8, 2^8-1] \rightarrow \text{overflow!}$ To avoid overflow: To avoid overflow: n = 11 bits (sign-extension) n = 10 bits (sign-extension) C₁₁⊕C₁₀=0 C₁₀⊕C₉=0 $c_{10} = 1$ $c_{9} = 1$ $c_{9} = 1$ $c_{9} = 1$ $c_{9} = 0$ $c_{5} = 0$ $c_{5} = 0$ $c_{5} = 0$ $c_{1} = 0$ $c_{1} = 0$ $c_{1} = 0$ $c_{1} = 0$ **C**₁₁=0 **C**₁₀=0 **C**₁₀=1 **C**₉=1 **C**₉=1 **C**₉=1 **C**₆=1 **C**₆=1 **C**₆=1 **C**₆=1 **C**₆=1 **C**₆=1 **C**₁=1 **C**₁=**C**₁=1 **C**₁=**C**₁=**C**₁=**C**₁=**C**₁=**C** No Overflow No Overflow -255 = 1 1 0 0 0 0 0 0 1 + $490 = 0 \ 0 \ 1 \ 1 \ 1 \ 0 \ 1 \ 0 \ 1 \ 0 \ +$ -230 = 1 1 0 0 0 1 1 0 1 022 = 0 0 0 0 0 0 1 0 1 1 0 -485 = 1 0 0 0 0 1 1 0 1 1 512 = 0 1 0 0 0 0 0 0 0 0 0 $490+22 = 512 \in [-2^{10}, 2^{10}-1] \rightarrow$ no overflow $-255-230 = -485 \in [-2^9, 2^9-1] \rightarrow \text{no overflow}$ n = 9 bits n = 11 bits c₉⊕c₈=0 c₁₁⊕c₁₀=1 $\begin{array}{c} \mathbf{c}_{11} = \mathbf{0} \\ \mathbf{c}_{10} = \mathbf{1} \\ \mathbf{c}_{9} = \mathbf{1} \\ \mathbf{c}_{9} = \mathbf{1} \\ \mathbf{c}_{8} = \mathbf{1} \\ \mathbf{c$ $\begin{array}{c} \textbf{C}_{9}=\textbf{0}\\ \textbf{c}_{8}=\textbf{0}\\ \textbf{c}_{8}=\textbf{0}\\ \textbf{c}_{7}=0\\ \textbf{c}_{5}=0\\ \textbf{c}_{5}=0\\ \textbf{c}_{4}=0\\ \textbf{c}_{3}=0\\ \textbf{c}_{3}=0\\ \textbf{c}_{1}=0\\ \textbf{c}_{1}=0\\ \textbf{c}_{0}=0\\ \textbf{c}_{0}=0\\ \end{array}$ No Overflow Overflow! -129 = 1 0 1 1 1 1 1 1 1 + 986 = 0 1 1 1 1 0 1 1 0 1 0 + 128 = 0 1 0 0 0 0 0 0 0 123 = 0 0 0 0 1 1 1 1 0 1 1 -1 = 1 1 1 1 1 1 1 1 11 0 0 0 1 0 1 0 1 0 1 $986+123 = 1109 \notin [-2^{10}, 2^{10}-1] \rightarrow \text{overflow!}$ $-129+128 = -1 \in [-2^8, 2^8-1] \rightarrow \text{no overflow}$ To avoid overflow: n = 12 bits (sign-extension) $\begin{array}{c} {\bf C}_{12}={\bf 0}\\ {\bf C}_{11}={\bf 0}\\ {\bf C}_{11}={\bf 0}\\ {\bf C}_{10}={\bf 1}\\ {\bf C}_{9}={\bf 1}\\ {\bf C}_{9}={\bf 1}\\ {\bf C}_{8}={\bf 1}\\ {\bf C}_{8}={\bf$ c₁₂⊕c₁₁=0 No Overflow 986 = 0 0 1 1 1 1 0 1 1 0 1 0 + 123 = 0 0 0 0 0 1 1 1 1 0 1 1 1109 = 0 1 0 0 0 1 0 1 0 1 0 1

 $986+123 = 1109 \in [-2^{11}, 2^{11}-1] \rightarrow \text{no overflow}$

PROBLEM 4 (6 PTS)

• For the following 4-bit bidirectional port, complete the timing diagram (signals *DO* and *DATA*):

